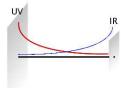
An Unusual Two-Higgs Doublet Model from Warped Space arXiv:1005.2953

We-Fu Chang¹ John N. Ng² Andrew P. Spray²

¹National Tsing Hua University, Taiwan ²TRIUMF, Canada

Brookhaven Forum, May 27th 2010

Outline The Elevator Talk


Overview

- \bullet $t\bar{t}$ condensation in RS
- Two Higgs Doublet Model
- **1** Move Q_{3L} away from IR brane
- Ease EWPO constraints.

Randall Sundrum Models The Bare Essentials

RS Models are 5D theories with a non-trivial warped geometry.

$$\mathrm{d}s^2 = \mathrm{e}^{-2k|y|} \mathrm{d}x^\mu \mathrm{d}x_\mu - \mathrm{d}y^2.$$

- SM states are zero modes of five dimensional fields;
- Higgs, Fermions and KK modes are localized in XD.

Electroweak Constraints and $Z ightarrow bar{b}$

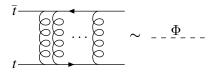
4D interactions depend on 5D wavefunction overlaps.

- \Longrightarrow KK modes couple strongest to t_R , Q_{3L} .
- ⇒ Large corrections to SM predictions for these states.

Relevant LEP constraints:

- T-parameter;
- \bullet $Z \rightarrow b\bar{b}$.

Solve these problems by:


- Gauging $SU(2)_R$;
- Adding a P_{LR} symmetry.

Can also ease constraints by moving Q_{3L} away from IR brane.

This was our Goal.

Composite Higgses in RS

KK gluon mediates strong top-sector interactions.

Extra Higgs \implies extra contribution to m_{top} \implies move Q_{3L} away from IR brane.

Earlier ideas:

- Using exotic fermions; or
- Using high (30 TeV) KK scale; and
- No fundamental Higgs.

The Gap Equation NJL Models

Integrate out KK gluon:

$$\rightarrow$$

Generate mass term non-perturbatively:

Non-trivial statement about strong dynamics!

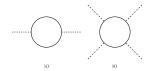
The Two Higgs Doublet Model An analytic approach

Can show: Gap equation solved \Rightarrow Scalar field in spectrum.

Rewrite NJL four-fermion term using auxillary scalar:

$$\frac{g}{M_{KK}^2} \left(\bar{\Psi} \Psi \right)^2 = M_{KK}^2 \Phi^2 + g \Phi \bar{\Psi} \Psi.$$

Model parameters:


- Fundamental scalar parameters λ_0 , m_0 ;
- \bigcirc KK Gluon mass M_{KK} ;
- Scalar-Fermion couplings g_t , λ_t —depend on 5D fermion localization.

NO new parameters compared to RS!

Physics Below the KK Scale RGEs

Renormalisation of fields below KK gluon mass:

Generates:

- Minetic term for Φ;
- 2 Sizeable kinetic mixing between H, Φ ;
- **3** Mass mixing between H, Φ ;
- All possible quartic terms.

Diagonalising the Kinetic Sector

Need to:

- Remove kinetic mixing;
- Bring kinetic terms to canonical normalisation.

Accomplish these goals with the field redefinition:

$$H = \hat{H}$$

$$\Phi = -\frac{\lambda_t}{g_t}\hat{H} + \frac{1}{g_t\sqrt{\epsilon}}\hat{\Phi}$$

Leads to very simple Lagrangian:

$$\begin{split} \mathcal{L}_{int} &= M_{hh}^2 \hat{H}^{\dagger} \hat{H} + M_{h\Phi}^2 \left(\hat{H}^{\dagger} \hat{\Phi} + \hat{\Phi}^{\dagger} \hat{H} \right) + M_{\Phi\Phi}^2 \hat{\Phi}^{\dagger} \hat{\Phi} \\ &+ \frac{1}{2} \lambda_0 (\hat{H}^{\dagger} \hat{H})^2 + \frac{1}{\epsilon} (\hat{\Phi}^{\dagger} \hat{\Phi})^2 + \frac{1}{\sqrt{\epsilon}} \overline{\mathcal{Q}_{3L}} t_R \tilde{\hat{\Phi}} + h.c. \end{split}$$

Matching to the Standard Model

Low Energy Boundary Conditions

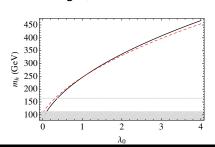
In our model, both Higgses acquire a vev.

 \Longrightarrow CP, $U(1)_{em}$ are automatically conserved.

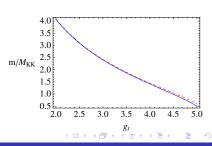
Matching to SM:

- **1** Match EWSB: $v_{ew}^2 = v_H^2 + v_{\Phi}^2$.
- ② Match top quark mass: $m_t = \frac{v\cos\beta}{\sqrt{2\epsilon}}$.

This determines both vevs!

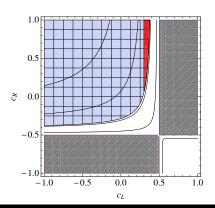

The Scalar Spectrum The Decoupling Limit

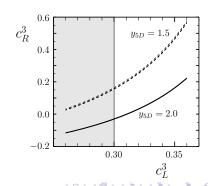
Neglecting mass mixing, scalar potential has symmetry


$$SU(2)_{\Phi L} \times SU(2)_{\Phi R} \times SU(2)_{HL} \times SU(2)_{HR}$$
.

Vevs break this to $SU(2)_{\Phi D} \times SU(2)_{HD}$; mass mixing to $SU(2)_V$. \Longrightarrow Implies degeneracy of H^{\pm} , A^0 ($SU(2)_V$ triplet).

Light, SM-like scalar




Heavy, decoupled scalars

Numerical Results RS Lagrangian Parameters

Regions exist where P_{LR} is unnecessary! Region where top condensation occurs is large!

Flavour-Changing Neutral Currents Or, How I Learnt to Stop Worrying and Love My Model

Won't this model lead to tree-level FCNCs?

Yes.

Yukawa sector:

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}\mathcal{M}_{ij}^{d}}{v\sin\beta} \, \overline{Q_{Li}} \, d_{jR} \, \hat{H} - \frac{\sqrt{2}\mathcal{M}_{ij}^{u}}{v\sin\beta} \, \overline{Q_{iL}} \, u_{jR} \, \widetilde{\hat{H}} + \frac{1}{\sqrt{\epsilon}} \, \overline{Q_{3L}} \, t_{R} \left(\widetilde{\hat{\Phi}} - \frac{\widetilde{\hat{H}}}{\tan\beta} \right) + h.c.$$

Suppression factors:

- Light Higgs: $\sin(\alpha \beta) \approx 10^{-3}$;
- Heavy Higgs: M_{KK}^{-1} ;
- Small Mixing Angles: $\overline{Q_{3L}}$, t_R mostly top.

Unusual Top Production and Decay

Our model predicts FCNC production, decay of top quark:

What will these look like at the LHC?

TeVatron has measured 2σ discrepancy in top A_{FB} .

$$A_{FB}^{exp} = 0.193 \pm 0.065 \pm 0.024;$$
 $A_{FB}^{SM} = 0.050 \pm 0.015.$

⇒ Can our model say anything about this?

Summary & Conclusions

- Formation of a composite scalar doublet is quasi-generic in RS models.
- The resultant 2HDM eases some of the constraints.
- Flavour-changing top physics expected; other FCNCs probably small.